customizeRule¶
Prior mandatory steps 1) Upload dataset 2) Create analysis 3) Create sub analysis 4) DataSharp 5) iRule
In customizeRule, for an existing pattern, one can change the values of the attributes and explore for best confidence rule.
The user will select the insight; changes the levels of any of the attributes in the LHS of the insight. Submit the change to compute the metrics. User can decide to accept/reject the newly generated insight.
Arguments
sub_analysis_id Give sub analysis id rule_id Give rule id custom_data {“attr_name”:”default”,”bin_value”:”no”} Possible errors
Error message Invalid sub analysis id Invalid rule id Please provide custom data Invalid attr name in custom data POST Request Example
curl -u username:password -X POST -F 'custom_data=[{"attr_name":"default","bin_value":"no"},{"attr_name":"housing","bin_value":"yes"}]' {url_prefix}/customize_rule/{sub_analysis_id}/{rule_id}/Response Example
{ "error": false, "error_msg": "", "result": [ { "actionability": 0.0, "confidence": 0.91368, "explicability": 0.85, "hmean": 1.8348, "lift": 1.03269, "recommended": "No", "record_count": "2297", "rule_string": "If default is no and housing is yes, then y = no", "support": 0.50807, "target_bin": "no" } ] }{ "error": false, "error_msg": "", "result": "Could not find better insight with one rule condition for the desired Class" }Error Response Example
{ "error": true, "error_msg": "Please provide custom data", "result": {}, }